659 research outputs found

    X-ray standing wave and reflectometric characterization of multilayer structures

    Get PDF
    Microstructural characterization of synthetic periodic multilayers by x-ray standing waves have been presented. It has been shown that the analysis of multilayers by combined x-ray reflectometry (XRR) and x-ray standing wave (XSW) techniques can overcome the deficiencies of the individual techniques in microstructural analysis. While interface roughnesses are more accurately determined by the XRR technique, layer composition is more accurately determined by the XSW technique where an element is directly identified by its characteristic emission. These aspects have been explained with an example of a 20 period Pt/C multilayer. The composition of the C-layers due to Pt dissolution in the C-layers, Ptx_{x}C1x_{1-x}, has been determined by the XSW technique. In the XSW analysis when the whole amount of Pt present in the C-layers is assumed to be within the broadened interface, it l eads to larger interface roughness values, inconsistent with those determined by the XRR technique. Constraining the interface roughness values to those determined by the XRR technique, requires an additional amount of dissolved Pt in the C-layers to expl ain the Pt fluorescence yield excited by the standing wave field. This analysis provides the average composition Ptx_{x}C1x_{1-x} of the C-layers .Comment: 12 pages RevTex, 10 eps figures embedde

    Effect of tourniquet use on the risk of revision in total knee replacement surgery : an analysis of the National Joint Registry Data Set

    Get PDF
    Objective: Tourniquet use in total knee replacement (TKR) is believed to improve the bone-cement interface by reducing bleeding, potentially prolonging implant survival. This study aimed to compare the risk of revision for primary cemented TKR performed with or without a tourniquet. Design: We analysed data from the National Joint Registry (NJR) for all primary cemented TKRs performed in England and Wales between April 2003 and December 2003. Kaplan-Meier plots and Cox regression were used to assess the influence of tourniquet use, age at time of surgery, sex and American Society of Anaesthesiologists (ASA) classification on risk of revision for all-causes. Results: Data were available for 16 974 cases of primary cemented TKR, of which 16 132 had surgery with a tourniquet and 842 had surgery without a tourniquet. At 10 years, 3.8% had undergone revision (95% CI 2.6% to 5.5%) in the no-tourniquet group and 3.1% in the tourniquet group (95% CI 2.8% to 3.4%). After adjusting for age at primary surgery, gender and primary ASA score, the HR for all-cause revision for cemented TKR without a tourniquet was 0.82 (95% CI 0.57 to 1.18). Conclusions: We did not find evidence that using a tourniquet for primary cemented TKR offers a clinically important or statistically significant reduction in the risk of all-cause revision up to 13 years after surgery. Surgeons should consider this evidence when deciding whether to use a tourniquet for cemented TKR

    Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions

    Get PDF
    We study the beam-energy and system-size dependence of \phi meson production (using the hadronic decay mode \phi -- K+K-) by comparing the new results from Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the transverse momentum distributions for \phi mesons are observed to be similar in yield and shape for Cu+Cu and Au+Au colliding systems with similar average numbers of participating nucleons. The \phi meson yields in nucleus-nucleus collisions, normalised by the average number of participating nucleons, are found to be enhanced relative to those from p+p collisions with a different trend compared to strange baryons. The enhancement for \phi mesons is observed to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.Comment: 20 pages and 5 figure

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    Measurement of the parity-violating longitudinal single-spin asymmetry for W±W^{\pm} boson production in polarized proton-proton collisions at s=500\sqrt{s} = 500 GeV

    Get PDF
    We report the first measurement of the parity violating single-spin asymmetries for midrapidity decay positrons and electrons from W+W^{+} and WW^{-} boson production in longitudinally polarized proton-proton collisions at s=500\sqrt{s}=500 GeV by the STAR experiment at RHIC. The measured asymmetries, ALW+=0.27±0.10  (stat.)±0.02  (syst.)±0.03  (norm.)A^{W^+}_{L}=-0.27\pm 0.10\;({\rm stat.})\pm 0.02\;({\rm syst.}) \pm 0.03\;({\rm norm.}) and ALW=0.14±0.19  (stat.)±0.02  (syst.)±0.01  (norm.)A^{W^-}_{L}=0.14\pm 0.19\;({\rm stat.})\pm 0.02 \;({\rm syst.})\pm 0.01\;({\rm norm.}), are consistent with theory predictions, which are large and of opposite sign. These predictions are based on polarized quark and antiquark distribution functions constrained by polarized DIS measurements.Comment: 6 pages, 4 figures, submitted to Physics Review Letter

    Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

    Get PDF
    We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.Comment: 6 pages, 3 figure
    corecore